

Design of Experiment

A Powerful Tool to Optimise Sample Preparation in Bottom-up Targeted Protein LC-MS Workflows

Szabolcs Szarka Drug Development Solutions

15th EBF Open Symposium 17th November 2022 Barcelona

Conventional Optimisation

Changing a single factor at a time

- Does not always lead to real optimum
- Limited information
- Many experiments

Design of Experiment (DoE)

Conventional

DoE

- A strategically planed and executed series of experiments
- All factors (e.g. pH, solvent, temperature) are changed simultaneously

VS

- Allows to investigate multiple factors at the same time
- More information, model setup and predictive power
- Fewer experiments

Protein LC-MS Quantitation

Bottom-up approach Image: Section with the section of the sec

- Unique peptide selected
- Peptide analysis by LC-MS/MS

- 17 variables @ 2 levels at all combinations $\rightarrow 2^{17} = \sim 130,000$ experiments
- Full optimisation is not attempted
- Generic methods (empirical, historical) "Worked fine before"
- DoE for the help

1. Define objectives

2. Define factors

3. Selection of experimental design

4. Perform experiment

5. Process the data

1. Define objectives

- Model analyte: IgG1 antibody
- Spiked into rat plasma
- 4 abundant HC surrogate peptides selected:
 - DTLM FNWY TTPV

VVSV

2. Define factors

3. Selection of experimental design

Goal

4. Perform experiment

• Maximize the response for the 4 surrogate peptides selected

5. Process the data

What variable do we want to assess? At what levels? 1. Define objectives 2. Define factors Reaction buffer X • Chaotropic agent: guanidine, urea Reduction agent: DTT, TCEP Reduction agent concentration: 1 - 50 mM Reduction incubation time: 10 - 60 min ۲ 3. Selection of Reduction incubation temperature: 22 - 70°C experimental design Alkylation conditions X 4. Perform Protease enzyme type: methylated, non-methylated trypsin experiment Enzyme to protein ratio (amount of enzyme): 1:5 – 1:500 5. Process the data Digestion time: 1.5 hours - O/N ullet

1. Define objectives

Modde Go software package

2. Define factors

3. Selection of experimental design

4. Perform experiment

5. Process the data

Design Wizard

- Screening
 - Test a large number of factors
 - Normally 2 or 3 levels •
 - What factors have the most impact on the assay?
- Optimisation
 - Smaller number of factors
 - Min. 3 levels •
 - Model generation, prediction •
 - Find the best conditions
- **Output:** experiment table

Objec	tive 🔶	Responses	
hich type of des	ign do you want to do	?	
Q		Q	R
Screening	System	Optimization	Robustness
	Characterization	(RSM)	Verification

000										
	1	2	3	4	5	6	7	8	9	10
Ī	Exp No	Exp Name	Run Order	Incl/Excl	Enzyme	Chaotropic Agent	Reduction Agent	Reduction Agent Concentration	E/P ratio	reduction Temperature
1	1	N1	1	Incl v	Promega 🗸	Guanidine 🗸 🗸	DTT ~	5	50	22
2	2	N2	5	Incl v	Thermo 🗸	Guanidine 🗸 🗸	DTT v	5	100	22
3	13	N13	17	Incl v	Promega 🗸	Guanidine 🗸 🗸	TCEP 🗸	50	100	22
4	14	N14	14	Incl v	Thermo v	Guanidine 🗸 🗸	TCEP ~	50	50	22
5	11	N11	9	Incl v	Promega 🗸	Urea 🗸 🗸	DTT v	50	100	22
6	12	N12	13	inci v	Thermo v	Urea 🗸 🗸	DTT v	50	50	22
7	7	N7	4	inci v	Promega 🗸	Urea 🗸 🗸	TCEP ~	5	50	22
8	8	N8	2	inci v	Thermo v	Urea 🗸 🗸	TCEP ~	5	100	22
9	17	N17	3	inci v	Thermo v	Urea 🗸	DTT v	27.5	75	46
10	18	N18	19	inci v	Thermo v	Urea 🗸	DTT v	27.5	75	46
11	19	N19	22	inci v	Thermo v	Urea 🗸	DTT v	27.5	75	46
12	20	N20	20	Incl v	Promega 🗸	Urea 🗸 🗸	DTT v	27.5	75	46
13	21	N21	21	Incl v	Promega 🗸	Urea 🗸 🗸	DTT v	27.5	75	46
14	22	N22	18	Incl v	Promega 🗸	Urea 🗸 🗸	DTT v	27.5	75	46
15	9	N9	15	Incl v	Promega 🗸	Guanidine 🗸 🗸	DTT v	50	50	70
16	10	N10	10	Incl v	Thermo v	Guanidine 🗸 🗸	DTT v	50	100	70
17	5	N5	12	Incl v	Promega 🗸	Guanidine 🗸 🗸	TCEP ~	5	100	70
18	6	N6	7	Incl v	Thermo v	Guanidine 🗸 🗸	TCEP ~	5	50	70
19	3	N3	16	Incl v	Promega 🗸	Urea 🗸 🗸	DTT v	5	100	70
20	4	N4	6	inci v	Thermo v	Urea 🗸 🗸	DTT v	5	50	70
21	15	N15	8	inci v	Promega 🗸	Urea 🗸 🗸	TCEP ~	50	50	70
22	16	N16	11	inci v	Thermo v	Urea 🗸	TCEP ~	50	100	70

1. Define objectives

2. Define factors

3. Selection of experimental design

4. Perform experiment

Perform experiments

- Following experiment table
- Samples injected in a random order
- Waters Acquity Classic UPLC
 - Acquity UPLC peptide CSH C18 2.1x100 mm, 130 Å, 1.7 μm
- Waters Xevo TQS
 - Triple quadrupole

•

1. Define objectives

Modde Go software package

2. Define factors

3. Selection of experimental design

4. Perform experiment

5. Process the data

- Responses (peak area) imported from LC-MS data processing software
- Interpretation of results
- Visualisation
- Modelling
- Prediction of optimal conditions

Screening Design

DRUG DEVELOPMENT SOLUTIONS Part of Alliance Pharma, Inc.

- 6 factors at 2 or 3 levels
- Digestion time not included in the design performed twice: 1.5 hr and O/N digestion
- 3 replicates at center-point to assess variation

- Fractional factorial design
- 44 samples (injections)

Factor	Levels
Chaotropic agent	Guanidine Urea
Reduction reagent	DTT TCEP
Trypsin	Methylated Non-methylated
Reduction agent concentration (mM)	5 27.5 50
Reduction temperature (°C)	22 46 70
E/P ratio	1:50 1:75 1:100

Screening design – Results

Replicate plots for VVSV surrogate peptide

- Center-point replicates (blue squares) are very tight → high data quality
- Highest response is obtained by short digestion \rightarrow **O/N digestion not required**

Screening design - Results

What is significant? Coefficient plot for VVSV surrogate peptide

Coefficients (scaled and centered) (PLS) Screening_main factors-linear_LGC_1andHalf Hour digestion

Optimisation Design

- 4 factors at 3 levels
- Methylated trypsin not affordable at low E/P
- 3 replicates at center-point

- Reduced central composite face centered design
- 23 samples (injections)

Factor	Levels
DTT concentration (mM)	1 13 25
Reduction temperature (°C)	22 46 70
Reduction time (min)	10 35 60
E/P ratio	5 27.5 50

Optimisation – Results

Coefficient plot for VVSV surrogate peptide

- DTT concentration improves the response
- Reduction time has a negative effect
- Interaction effects detected: DDT conc. x temperature and temperature x time

Optimisation – Results

- Model generated
 Surface response plot for VVSV
- Prediction
 - Modde Optimizer for optimal sample preparation conditions

60

1e+06

800000

600000

1.2e+06

1.3e+06

1.2e+06

1.1e+06 1e+06

900000

800000

700000

600000

500,000

60

Outcome

- No single method fits for all
- 2 optimal methods for peptide pairs
 - 1. DTLM & FNWY:
 - Reduce with 1 mM DTT for 10 min @ 70°C

70

- Digest for 1.5 hours with E/P 1:50 (non-methylated enzymed)
- 2. TPEV & VVSV:
 - Reduce with 23mM DTT for 15 min @ 27°C 50
 - Digest for 1.5 hours with E/P 1:10 (non-methylated enzyme) Red. time (min) 6070

Next step: assess optimal methods vs a generic preparation

		,	_				A					
Optimizer Dynamic Contour *			Pro Design s	Pro		Pro De		Design space				
profile Optimizer i	nterpretat	ion	Face -	explo	rer	explo	ration * S	etpo	oint analysis	Fa		
Replicate Plot Summar		y of F	it Plot	Work	csheet	F	Responses		Factors	Coefficient Pl	ot Opt	imizer ×
Setpoint	μ,	Obj	jective	Setpoint	(#3)	Alterna	tive setpoir	nts				
Selected cetroint: #2			Res	ponse Obje		ective	Value		Response range		log(D)	Prob. of failu
ociceted seepointing.	1		TPEV1		Maximize		279	993		•	-0.889239	
Alternative setpoints:		2	FNWY	2	Maxi	mize	13773.6			•	-1.23732	
# log(D) Prob.	of 🔨	3	DTLM	1	Maxi	mize	158	750		-	-1.03517	
1 -0.988		4	DTLM	ox1	Predi	cted	3759	.21		-		
2 -0.862		5	VVSV	1	Maxi	mize	1.07913e+	+06		-	-1.13045	
3 -1.05		6	VVSV	2	Predi	cted	190	918		•		
4 -1.04		7	% Oxi	dation	Predi	cted	2.67	479				
5 1.02		8	% Dez	midation	Predi	cted	6.56	669				

Optimisation – Prediction Validation

DTLM FNWY Sample113 : MRM of 8 Channels ES+ Sample113 2: MRM of 8 Channels ES 418.5 > 506.28 (DTLM 1) 560.3 > 765.87 (ENWY 2) 100-100 1.00e **2x 10x** 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1 40 1.45 1.50 1.55 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 3.05 3 10 3.15 3.20 Sample111 2: MRM of 8 Channels ES+ Sample113 3: MRM of 4 Channels ES+ 714.1 > 472.28 (TPEV 1) 603.73 > 805.92 (VVSV 1) TPEV **VVSV** 100-100 1.20e7 **10x 50x** 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 5.50 5.60 5.70 5.80 5.90 6.00 6.10 6.20 6.30 6.40 6.50

DRUG DEVELOPMENT

SOLUTIONS Part of Alliance Pharma, Inc.

- Optimal preparation conditions for DTLM and FNWY by DoE (~3-hour prep.)
- Optimal preparation conditions for TPEV and VVSV by DoE (~3-hour prep.)
- Control generic preparation setup (2-day prep.)

Conclusions

- DoE excellent tool for protein sample preparation optimisation for LC-MS assays
- Achieved comprehensive optimisation within minimal experiments (~70 vs ~500)
- Reliable predictive power responses changed as predicted by the model
- Peptide yields from IgG1 increased by $\mathbf{10}\text{-}\mathbf{50x} \rightarrow \mathbf{increased}$ sensitivity
- Significant reduction of sample preparation time (~3 hours vs O/N)

\rightarrow higher throughput

• Challenge: difficult to execute in the lab \rightarrow looking at automation options

Special Thanks!

Margrét Þorsteinsdóttir Professor Faculty of Pharmaceutical Sciences

DRUG DEVELOPMENT SOLUTIONS art of Alliance Pharma Inc.

Thank you for your attention

Any further questions?

SSzarka@alliancepharmaco.com

drugdevelopmentsolutions.com

@DDSDrugDev in @drugdevelopmentsolutions

@drugdevelopmentsolutions