Improving Assay performance when complex sample pre-treatment is required – a CRO perspective

Proven expertise. Worldwide access.

Case Studies

Improving assay performance in a heat treatment assay

Improving analyst to analyst variation in a PandA assay

Improving precision in BEAD assays

Introduction

Complex sample pre-treatment methods are sometimes required to achieve the high levels of drug tolerance requested by sponsors

ACE, Precipitation, SPEAD, Bead methods and heat treatment

These techniques can be:

- Time consuming
- Have poor precision
- Require specialized equipment

ARE WE DOING TOO MUCH?

Introduction

ARE WE DOING TOO MUCH?

- A CRO needs to meet the requirements of the Sponsor
- We need to know the level of drug expected in the ADA samples
- Complex sample pre-treatment is still required in some cases

Case Study 1: Heat treatment

When it is required:

- Reduce matrix effects
- Improve drug tolerance to non-IgG therapeutics

Potential Assay problems:

- Changes to the matrix consistency leading to poor precision
- Evaporation of samples during heating leading to poor precision
- Denaturation of the PC
- Changes to pH due to the temperature change

Case Study 1: Heat treatment

Control	CV%		
Control	Intra Assay	Inter Assay	
HPC	<10	<10	
MPC	<10	<10	
LPC	<10	<30	
NC	<10	<50	

Case Study 1: Heat treatment

CRO Solutions:

- Use specific tubes with screw cap lids
- Use heat block with specific dimensions
- Set minimum and maximum sample volumes

	CV%		
Control	Intra Assay	Inter Assay	
HPC	<5	<5	
MPC	<5	<5	
LPC	<5	<10	
NC	<5	<15	

Case Study 2: Improving analyst to analyst variation in a PandA assay

Day 1

Case Study 2: Improving analyst to analyst variation in a PandA assay

The solution Manual pellet wash Screen Screen (S/N) RLU MPC LPC HPC NC 224.5 24.26 **Inter Mean** 3.45 86 28.8 30.4 20.3 5.2 Inter %CV Max Intra-assay 10 9.7 7.2 4.2 % **CV**

Case Study 2: Improving analyst to analyst variation in a PandA assay

Manual pellet wash

Automated pellet wash

	Screen (S/N)			Screen RLU
	HPC	MPC	LPC	NC
Inter Mean	224.5	24.26	3.45	86
Inter %CV	28.8	30.4	20.3	5.2
Max Intra-assay % CV	10	9.7	7.2	4.2

	Screen (S/N)			Screen RLU
	HPC	MPC	LPC	NC
Inter Mean	355.07	41.63	5.24	61
Inter %CV	7.1	6.9	6.7	8.3
Max Intra-assay % CV	9.5	8	7.9	10.1

Validation Intra-Assay Precision - manual bead steps

The solution

KingFisher

 High precision seen, particularly in the NC with manual bead processing method

	1-2	5-6
Α	NC	NC
В	HPC	Blank individual

	1-2	5-6
Α	15000	46
В	120000	55

Inter-assay precision using automated bead processing

	CV %		
Control	Screen S/N	Confirmatory	
HPC	<10	<]	
MPC	<15	<]	
LPC	<19	<10	
NC	<15 (RLU)	<10	

Intra-assay precision using automated bead processing

	CV%	
Control	Screen S/N	Confirmatory
HPC	<3	<]
MPC	<5	<]
LPC	<5	<3
NC	<5 (RLU)	<10

KingFisher Protocol optimisation:

- Incubation times
- Shaking times and speeds
- Buffers
 - Inclusion of detergent

Summary

Complex sample pre-treatment is often required for immunogenicity assays

- They can have poor precision and poor assay performance
- The simple assay formats should be assessed first

There are methods to eliminate the assay variability

- Ensuring consumables remain consistent e.g. screw cap tubes to heat samples
- Use automation and electronic equipment where possible

Our recommendations

- Heat treatment can only be used to improve drug tolerance with a non-IgG therapeutic
- You can achieve high levels of drug tolerance with PandA, but you may encounter the licensing problems
- Automated bead-based methods are simple and achieve high levels of drug tolerance

Acknowledgements

Resolian IA Department colleagues

References Images Created on BioRender.com

Thank you for listening,

Any questions?

RESOLIAN

Proven expertise. Worldwide access.